

DPP – 2 (Electrostatics)

Video Solution on Website:-https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-

https://youtu.be/gRV0_wc4gOI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

Q 1. Two identical positive charges are fixed on the y-axis, at equal distances from the origin o. A particle with a negative charge starts on the negative x-axis at a large distance from o, moves along the x-axis, passed through o and moves far away from o. Its acceleration a is taken as positive along its direction of motion. The particle's acceleration a is plotted against its x-coordinate. Which of the following best represents the plot?

- Q 2. A positively charged thin metal ring of radius R is fixed in the x-y plane with its centre at the origin o. A negatively charged particle P is released from rest at the point $(0, 0, z_0)$ where $z_0 > 0$. Then the motion of P is:
 - (a) periodic for all values of z_0 satisfying $0 < z_0 < \infty$
 - (b) simple harmonic for all values of z_0 satisfying $0 < z_0 \leq \mathbb{R}$
 - (c) approximately simple harmonic provided $z_0 < < R$
 - (d) such that P crosses o and continues to move along the negative z-axis towards $z = -\infty$
- Q 3. Two identical point charges are placed at a separation of ℓ . P is a point on the line joining the charges, at a distance x from any one charge. The field at P is E. E is plotted against x for values of x from close to zero to slightly less than ℓ . Which of the following best represents the resulting curve?

Q4. A uniform rod of length l and mass m is charged with a charge q is hanging from one of its ends as shown in figure. At t = 0 a horizontal electric field E is switched on in the horizontal direction perpendicular to the rod. Find the minimum value of E so that the rod rotates up to horizontal level. (b) $\frac{mg}{a}$ (c) $\frac{mg}{2a}$

(a) $\frac{2mg}{q}$

(d) None

Q 5. Charge over a non-conducting ring is distributed so that the linear charge density varies as $\lambda =$ $\lambda_0 \sin \theta$. What is direction of force on a charge q_0 placed at the center?

(a) along 1 if q_0 is –ve (c) along 3 if q_0 is +ve (d) along 4 if q_0 is -ve

Q 6. The electric field at centre of semicircular ring shown in figure. (Charge q and -q are uniformly distributed on respective parts)

- Q7. Three infinitely long charged thin wire are placed along x, y, z axis. Their line charge densities are λ_1 , λ_2 and λ_3 respectively. Then (a) E_x at point (a, a, 0) is independent to λ_2
 - $\lambda_1^2 + \lambda_2^2$ (b) E_z at point (a, a, a) is proportional to
 - (c) E at point (a, a, 0) is proportional to $\sqrt{\lambda_1^2 + \lambda_2^2}$
 - (d) None of these
- Q 8. A 10 cm long rod carries a charge of + 50 μ C distributed uniformly along its length, Find the magnitude of the electric field at a point 10 cm from both the ends of the rod.
 - (c) 1.3×10^7 N/C (a) 5.2×10^7 N/C (b) 2.6×10^7 N/C (d) 6.5×10^7 N/C

COMPREHENSION

Two point charges are placed at point a and b. The field strength to the right of the charge Q_h on the line that passes through the two charges varies according to a law that is represented graphically in the figure. The electric field is taken positive if its direction is towards right and negative if its direction is towards left.

(d) (1 +

(d)

- Q 9. Choose the correct statement regarding the signs of the charges. (a) Charge at point a is positive and charge at point b is negative. (b) Charge at point a is negative and charge at point b is positive.
 - (c) Both charges are positive
 - (d) Both charges are negative
- Ratio of magnitudes of charges $\left|\frac{Q_a}{Q_b}\right|$ will be equal to: Q 10.

(a) $\left(1 + \frac{\ell}{x_1}\right)$	(b) $\left(1 + \frac{\ell}{x_1}\right)^2$
(a) $\left(1 + \frac{t}{x_1}\right)$	(b) $\left(1 + \frac{t}{x_1}\right)$

- The distance x_2 from point b where the field is maximum, will be Q 11. (a) -(b) $\left(\frac{\ell+2x_1}{x_1}\right)^{\frac{2}{3}}-1$
 - $\left(\frac{\ell+x_1}{x_1}\right)^{\frac{2}{3}}-1$

Assume that gravitational lines of forces represent gravitational field just like electric lines of Q 12. forces represent electric field. Which of the following diagram correctly represents the gravitational field lines for a pair of point masses shown in options below?

(c) (1

- Q 13. There is a uniformly charged fixed horizontal ring of radius R. A point charge is placed on its axis at height .5R from its centre. If charge is in equilibrium, the equilibrium is
 - (a) Stable
 - (b) Unstable (c) Neutral
 - (d) None of these

Answer Key

Q.1 b	Q.2 c	Q.3 d	Q.4 b	Q.5	a, b
Q.6 a	Q.7 d	Q.8 a	Q.9 a	Q.10	b
Q.11 a	Q.12 c	Q.13 b			