DPP - 2 (Electrostatics)

Video Solution on Website:-

Video Solution on YouTube:- https://youtu.be/gRVO_wc4gOI

https://physicsaholics.com/home/courseDetails/93

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

Q 1. Two identical positive charges are fixed on the y-axis, at equal distances from the origin o. A particle with a negative charge starts on the negative x-axis at a large distance from o, moves along the x-axis, passed through o and moves far away from o. Its acceleration a is taken as positive along its direction of motion. The particle's acceleration a is plotted against its x coordinate. Which of the following best represents the plot?

(a)

(b)

(c)

(d)

Q 2. A positively charged thin metal ring of radius R is fixed in the $x-y$ plane with its centre at the origin 0 . A negatively charged particle P is released from rest a the point $\left(0,0, z_{-} 0\right)$ where $z_{-} 0$ >0. Then the motion of P is:
(a) periodic for all values of z_{0} satisfying $0<z_{0}<\infty$
(b) simple harmonic for all values of z_{0} satisfying $0<z_{0}<\mathrm{R}$
(c) approxìmately simple harmonic provided $z_{0} \ll \mathrm{R}$
(d) such that P crosses o and continues to move along the negative z -axis towards $\mathrm{z}=-\infty$

Q 3. Two identical point charges are placed at a separation of $\ell . \mathrm{P}$ is a point on the line joining the charges, at a distance x from any one charge. The field at P is E . E is plotted against x for values of x from close to zere to slightly less than ℓ. Which of the following best represents the resulting curve?

(a)

(c)

(b)

(d)

Q 4. A uniform rod of length 1 and mass m is charged with a charge q is hanging from one of its ends as shown in figure. At $\mathrm{t}=0$ a horizontal electric field E is switched on in the horizontal direction perpendicular to the rod. Find the minimum value of E so that the rod rotates up to horizontal level.
(a) $\frac{2 m g}{q}$
(b) $\frac{m g}{q}$
(c) $\frac{m g}{2 q}$
(d) None

Q 5. Charge over a non-conducting ring is distributed so that the linear charge density varies as $\lambda=$ $\lambda_{0} \sin \theta$. What is direction of force on a charge q_{0} placed at the center?

(a) along 1 if q_{0} is -ve
(b) along 2 if q_{0} is +ve
(c) along 3 if q_{0} is +ve
(d) along 4 if q_{0} is -ve

Q 6. The electric field at centre of semicircular ring shown in figure. (Charge q and $-q$ are uniformly distributed on respective parts)

(a) $\frac{4 K Q}{\pi R^{2}}$
(b) $\frac{K Q}{\pi R^{2}}$
(c) $\frac{2 K Q}{R^{2}}$
(d) $\frac{K Q}{2 \pi R^{2}}$

Q 7. Three infinitely long charged thin wire are placed along x, y, z axis. Their line charge densities are λ_{1}, λ_{2} and λ_{3} respectively. Then
(a) E_{x} at point (a, a, 0) is independent to λ_{2},
(b) E_{z} at point (a, a, a) is proportional to $\sqrt{\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}}$
(c) E at point (a, a, 0) is proportional to $\sqrt{\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}}$
(d) None of these

Q 8. A 10 cm long rod carries a charge of $+50 \mu \mathrm{C}$ distributed uniformly along its length, Find the magnitude of the electric field at a point 10 cm from both the ends of the rod.
(a) $5.2 \times 10^{7} \mathrm{~N} / \mathrm{C}$
(b) $2.6 \times 10^{7} \mathrm{~N} / \mathrm{C}$
(c) $1.3 \times 10^{7} \mathrm{~N} / \mathrm{C}$
(d) $6.5 \times 10^{7} \mathrm{~N} / \mathrm{C}$

COMPREHENSION

Two point charges are placed at point a and b. The field strength to the right of the charge Q_{b} on the line that passes through the two charges varies according to a law that is represented graphically in the figure. The electric field is taken positive if its direction is towards right and negative if its direction is towards left.

Q 9. Choose the correct statement regarding the signs of the charges.
(a) Charge at point a is positive and charge at point b is negative.
(b) Charge at point a is negative and charge at point b is positive.
(c) Both charges are positive
(d) Both charges are negative

Q 10. Ratio of magnitudes of charges $\left|\frac{Q_{a}}{Q_{b}}\right|$ will be equal to:
(a) $\left(1+\frac{\ell}{x_{1}}\right)$
(b) $\left(1+\frac{\ell}{x_{1}}\right)^{2}$
(c) $1+\left(\frac{\ell}{x_{1}}\right)^{2}$
(d) $\left(1+\frac{t}{x}\right)^{4}$

Q 11. The distance x_{2} from point b where the field is maximum, will be
(a) $\frac{\ell}{\left(\frac{\ell+x_{1}}{x_{1}}\right)^{\frac{2}{3}}-1}$
(b)

(c) $\frac{1}{\left(\frac{\ell+2 x_{1}}{x_{1}}\right)^{\frac{2}{3}-1}}$

Q 12. Assume that gravitational lines of forces represent gravitational field just like electric lines of forces represent electric field. Which of the following diagran correctly represents the gravitational field lines for a pair of point masses shown in options below?

(a)

(c)

(d)

Q 13. There is a uniformly charged fixed horizontal ring of radius R. A point charge is placed on its axis at height. $5 R$ from its centre. If charge is in equilibrium, the equilibrium is
(a) Stable
(b) Unstable
(c) Neutral
(d) None of these

Answer Key

Q. 1 b	Q. 2 c	Q. 3 d	Q. 4 b	Q. 5	a, b
Q. 6 a	Q. 7 d	Q. 8 a	Q. 9 a	Q. 10	b
Q. 11 a	Q. 12 c	Q. 13 b			

